由计算结果可以看出

2019-08-21 18:12

图2 排水板布置剖面图

由试验结果可以看出,经过真空预压加固处理以后,淤泥质土层的抗剪强度得到了显著的提高,达到了原来值的2.88倍,并大于设计推算的平均不排水抗剪强度31kpa,可以满足渠堤稳定要求。

根据滑坡发生的范围和附近区域的工程地质资料,塑料排水板布置的范围为顺水流向从桩号0-496.30m~0-390.10m,垂直水流方向包含整个进水渠南堤宽度再往进水渠延伸15m,总加固面积约5400m2。排水板布置剖面图见图2。

(1)经过现场查勘和实际测量,对照滑坡体测量图,发现滑坡体附近的②3层土基本上处于地质剖面图中的最深处,最大深度达6.9m,另一方面,该段②3层土的实际物理力学指标远较预料中的为低应是导致该处边坡失稳的主要原因。

固结度计算的目的是通过计算固结度,推求地基强度的增长,据此进行稳定分析,在此基础上判断排水系统布置的合理性并确定真空预压的施工期。.固结度根据三向固结轴对称问题的解析解进行计算,计算参数和结果见表2。由计算结果可以看出,径向固结度远大于竖向固结度,地基主要是通过径向排水固结的。由此可见,在地质情况确定的情况下,固结度主要受排水板平面布置的影响,过大的排水板深度无利于固结度的提高。

表2 固结度计算参数及计算结果

9、结语

(2)在塑料排水板真空预压加固处理中,水平径向固结度远大于竖向固结度,土体固结主要靠径向排水固结。

3、滑坡原因分析

排水板尺寸为100mm4mm,在滑坡中心区桩号0-478.30m~0-408.10m之间70.2m范围内,排水板间距1.3m,按三角形布置。在滑坡区两侧桩号0-496.30m~0-478.30m之间及0-408.10m~0-390.10m之间各18m范围内,排水板间距以1.5m、2.0m、2.5m间隔按三角形布置。本工程加固的主要对象是②3层淤泥质粉质粘土,以渠堤稳定为控制条件,所以排水板的长度根据最危险滑弧的深度来确定。根据土层地质资料分析和稳定计算结果,最危险滑弧底部高程与②3层土底部相切,所以排水板必须穿过②3层土,最后确定排水板底高程-9.00m。在排水板顶部铺设0.50m厚的砂垫层,当中布置滤水管,砂垫层上铺设2层密封膜。采用射流真空泵抽真空,预压期间泵真空压力不小于96kpa,膜内真空度不小于80kpa。

发生滑坡的原因是多方面的,这和该段的水文地质条件以及当时的气候条件等都有着密切的联系,经分析研究,认为发生滑坡的主要原因如下:

对滑坡的处理一般采用改变堤防的断面或堤线位置,采取堤顶卸载或堤脚堆载的办法,由于进水渠的河道断面及堤顶高程必须满足过流和防洪要求,因此该处理办法在本工程不适用;对滑坡的处理另一种方法是处理堤基,提高堤基土的物理力学指标和抗滑能力,设计先后考虑了两个方案:一是采用水泥搅拌桩加固堤基,二是采用塑料排水板真空预压加固堤基,对上述两个方案进行施工现场条件、工期、加固方案费用等技术经济比较后,采用方案二。

5、真空预压设计

(3)土体大部分的固结发生在预压2个月左右,固结速率表现为前期很大,后期明显变小。因此,从经济角度出发,在满足加固效果的前提下,可以合理缩短后期预压时间和适当减少后期部分预压设备的运行。

(1)深厚的淤泥质土层经过真空预压处理后,抗剪强度指标能得到显著提高。

(2)滑坡的前一天下雨,雨水渗入土坡,使土体基本处于饱和状态,由此土的物理力学指标进一步降低;另一方面,外坡的水塘一直有水,使堤防的浸润线抬高,增加了渗透压力。

5.1塑料排水板布置范围

由于滑坡后土体受到很大的扰动,在滑坡区域进行的十字板试验抗剪强度随深度的变化的规律比较紊乱,设计根据滑坡体外试验点的试验数据进行线性拟合以后进行抗剪强度增长值的推算。经过推算,经过60天的预压达到88%固结度的时候,推算的平均不排水抗剪强度为31kpa。经稳定分析,该强度指标可以满足渠堤稳定的要求。

5.4抗剪强度增长值的推算

5.3地基固结度计算

(3)太浦河泵站的进水渠属于挖、填结合型,渠道为新开挖,渠道开挖属于卸荷过程,堤防回填高约3m,属加荷过程。渠道的开挖和回填几乎同时进行,工序集中,时间短促(先回填,后开挖,回填约三个月,开挖约一个月)。此外,由于进水渠边坡土体主要由渗透性能差、固结缓慢的粘土及淤泥质粉质粘土组成,在快速加荷、卸荷过程中易于产生较大孔隙水压力并较大幅度降低土体抗剪强度。

5.2塑料排水板布置

4、处理方案拟订

(4)施工过程中注意加强气密性检查和修补是保证预压效果的重要环节。

处理的具体步骤:滑坡体修整、真空预压的施工、渠堤回填、边坡修正。